
Exact moment scaling from multiplicative noise

Giacomo Bormetti1,2,* and Danilo Delpini3,2,†

1CeRS–IUSS, V.le Lungo Ticino Sforza 56, Pavia 27100, Italy
2INFN–Sezione di Pavia, Via Bassi 6, Pavia 27100, Italy

3Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, Via Bassi 6, Pavia 27100, Italy
�Received 30 November 2009; revised manuscript received 8 February 2010; published 10 March 2010�

For a general class of diffusion processes with multiplicative noise, describing a variety of physical as well
as financial phenomena, mostly typical of complex systems, we obtain the analytical solution for the moments
at all times. We allow for a nontrivial time dependence of the microscopic dynamics and we analytically
characterize the process evolution, possibly toward a stationary state, and the direct relationship existing
between the drift and diffusion coefficients and the time scaling of the moments.
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Many different physical phenomena exhibit a complex be-
havior characterized by long-range correlations, long-time
memory, scale invariance, and the emergence of non Gauss-
ian distributions associated to their statistical description.
Deviations from the Maxwell-Boltzmann statistics were usu-
ally considered as a clear mark of an out of equilibrium
system, but recently it has been recognized that Normality is
not the most general paradigm describing the equilibrium
state. Indeed, in terms of a microscopic description provided
by the Langevin equation, power-law tails stem naturally as-
suming the damping coefficient to have a stochastic nature
�1�. From a macroscopic point of view, the superposition of
an additive Gaussian noise with a multiplicative one leads to
a Fokker-Planck �FP� equation with linear drift and quadratic
diffusion coefficients. Processes leading to a macroscopic
equation with the same structure emerge in the description of
several physical systems ranging from turbulent velocity
flows �2�, power law spectra in e+e−, pp̄ and heavy ions
collisions �3�, anomalous diffusion phenomena �4�, to the
study of non stationary scaling Markov processes with Hurst
exponent H�1 /2 �5�. Moreover, the same dynamics has
been shown to describe heartbeat interval fluctuations, for-
eign exchange markets �6�, option markets �7�, and the sta-
tistical features of medium-term log returns in a market with
both fundamental and technical traders �8�. The explicit ana-
lytical characterization of the probability density function
�PDF� for these processes has been carried out only for the
steady state �1�, while an analytical description at finite time
can be given only in terms of a formal expansion on the set
of eigenfunctions of the FP operator �9�. In this Brief Report,
we provide a complete description of these processes in
terms of their moments, allowing for more general time de-
pendence for both the drift and diffusion coefficients. We
obtain closed-form expressions for the moments at finite
time; in particular, we are able to characterize analytically
how they thermalize to the stationary state and we highlight
the existence of a direct, simple relationship between the
function regulating the time dependence and the scaling of
the process over time.

We start from the stochastic differential equation �SDE�
describing the microscopic dynamics under Itô prescription
�11�

dXt =
aXt + b

g�t�
dt +�cXt

2 + dXt + e�t�
g�t�

dWt, �1�

with initial time condition Xt0
=X0, t0�D� �0, tlim� with tlim

possibly +�; Wt is the standard Brownian motion, a, b, c,
and d are real constants, 1 /g�t� and e�t� are non negative
smooth functions of the time over D. For the diffusion coef-
ficient to be meaningful, it has to satisfy d2−4ce�t��0 with
c�0. Application of the Itô Lemma to f�Xt�=Xt

n leads to the
following integral relation

Xt
n = X0

n + �
t0

t Xs
n−2

g�s�
�FnXs

2 + AnXs + Bn�s��ds

+ n�
t0

t Xs
n−1

�g�s�
�cXs

2 + dXs + e�s�dWs, �2�

whose expectation readily provides the linear ordinary
differential equation satisfied by the n-th order moment
�n�t�= �Xt

n� for n�1

g�t�
d

dt
�n�t� = Fn�n�t� + An�n−1�t� + Bn�t��n−2�t� , �3�

with boundary condition �n�t0�= �X0
n�. The coefficients read

Fn=na+ 1
2n�n−1�c, An=nb+ 1

2n�n−1�d, Bn�t�= 1
2n�n−1�e�t�,

and we assume �0�t�=1. If �X0
k� for k=1, . . . ,n is a finite

quantity, the smoothness of 1 /g�t� and e�t� ensures the exis-
tence of a unique solution �n�t� over an arbitrary interval
D�= �ti , tf��D with t0�D�. In terms of the monotonously
increasing function ��t�=	t0

t 1 /g�s�ds, the solution reads

�n�t� = exp�Fn��t��
�X0
n� + �

0

��t�

exp�− Fn�1�An�̃n−1��1�d�1

+ �
0

��t�

exp�− Fn�1�B̃n��1��̃n−2��1�d�1� , �4�

where �̃n���=�n�t���� and B̃n���=Bn�t����. The previous
expression lends itself to an expansion over �X0

n−j�, for
*giacomo.bormetti@pv.infn.it
†danilo.delpini@pv.infn.it

PHYSICAL REVIEW E 81, 032102 �2010�

1539-3755/2010/81�3�/032102�4� ©2010 The American Physical Society032102-1

http://dx.doi.org/10.1103/PhysRevE.81.032102


j=0, . . . ,n by iteratively substituting the moments entering
the right-hand side with their closed-form solutions. We de-
tail how to proceed for the simpler case e�t�=e�0. We de-
fine type A and type B “knots” of order k whose contribu-
tions are

Ak = Ak�
0

�

exp�ak���d�� and Bk = Bk�
0

�

exp�bk���d��,

with ak=−�Fk−Fk−1� and bk=−�Fk−Fk−2�. We now consider
ordered sequences of knots obtained applying the following
rules: �a� fix the order of the moment n� �1, . . . ,N
; �b� fix
j� �1, . . . ,n
; �c� choose the first knot between An or Bn; �d�
move rightward adding a new knot. Ak can be followed by
either Ak−1 or by Bk−1, while Bk can be followed by either
Ak−2 or Bk−2; �e� if NA and NB are the number of type A and
type B knots, respectively, stop when NA+2NB= j. We asso-
ciate to every ordered sequence generated going through the
previous procedure an integral made of NA+NB nested inte-
grals. For instance, for j=1 the only admissible sequence is
An. For j=2, beside Bn, we have to consider the sequence
AnAn−1 giving the contribution

AnAn−1 = AnAn−1�
0

�

exp�an�1��
0

�1

exp�an−1�2�d�2d�1.

When j=4 the following strings have to be taken into ac-
count

AnAn−1An−2An−3, AnAn−1Bn−2, AnBn−1An−3,

BnAn−2An−3, BnBn−2.

The special case j=0 is associated to a sequence with no
knot whose contribution is equal to 1. Once n has been fixed,
it is readily proved that every sequence is univocally de-
termined retaining the label of the vertex while dropping
the indexes. For the case j=4 above strings reduce to
AAAA ,AAB ,ABA ,BAA ,BB. We call �NANB

the set of per-
mutations with no repetition of NA type A elements and NB
type B elements and �NANB

its generic element; the compact
notation 	n��NANB

,��t�� identifies the NA+NB-dimensional
integral contributing to the n-th moment and corresponding
to the sequence of knots sorted according to �NANB

. In terms
of the above quantities, the expression of �n�t� can be use-
fully rewritten in the compact form

exp�Fn��t���
j=0

n

�X0
n−j� �

NA+2NB=j
�

�NANB

	n��NANB
,��t�� . �5�

A careful analysis of the quantity 	n��NANB
,��t�� shows that

it can always be computed analytically in an algorithmic way
�15�, which makes the expansion �5� a powerful tool to ex-
actly compute �n up to an arbitrary order. Supposing that all
the ak and bk involved in the expression of �n are non van-
ishing �16�, the expansion �5� can be rewritten as

�n�t� = �
j=0

n

cj
nexp�Fn−j��t�� , �6�

the cj
n being real possibly vanishing functions of the Ak’s,

Bk’s, Fk’s, and �X0
k�. Above equation provides evidence of the

typical scaling of the moments over time. The multiple time
scales emerging from the multiplicative noise process can be
affected by varying the functional form of g�t�. For a con-
stant g�t�=1 �1�, we have �= t− t0 and the n-th order moment
is characterized by the superposition of n exponentials with
time constants �1 / �Fn� , . . . ,1 / �F1�
. When g�t�= t, as in �10�,
we have terms of the form

exp�Fn−j��t�� = tFn−jt0
−Fn−j ,

producing a power law time scaling of the moments. More
generally, for g�t�= t
 �
�1� the time dependence turns out
to be a stretched exponential with stretching exponent 1−


exp�Fn−j��t�� = exp�Fn−j�t1−
 − t0
1−
�/�1 − 
�� .

Equation �6� also allows us to gain insight into the nature of
the stochastic process described by the model �1�, both at
finite t and for t approaching tlim. As far as the PDF p�x , t�
associated to above process is concerned, in general we are
not allowed to draw any conclusion about its shape. How-
ever, an important exception is the case when, for t→ tlim, we
have a diverging �. Indeed, in terms of � the PDF satisfies the
FP equation

�

��
p̃�x,�� = −

�

�x
�D1�x�p̃�x,��� +

1

2

�2

�x2 �D2�x�p̃�x,��� ,

�7�

with D1�x�=ax+b and D2�x�=cx2+dx+e and initial condi-
tion p̃�x ,0�= p̃0�x�, for which the stationary solution p̃st�x�
can be computed analytically following �1,11�. This solution
provides evidence of the possible emergence of power law
tails and Eq. �6� precisely characterizes the way the moments
converge to the stationary level. Indeed, the smoothness of
� as a function of t implies limt→tlim

− p�x , t�=lim�→+� p̃�x ,��
= p̃st�x�. For example, if g�t�= �t− tlim�
 with 
�1, the be-
havior of p̃st�x� emerging from the analysis of Eq. �7� applies
to p�x , t� when t approaches tlim, while the moments scale
according to

exp�Fn−j��t�� = exp„Fn−j��t0 − tlim�1−
 − �t − tlim�1−
�/�1 − 
�… .

We now discuss how our results can be employed to charac-
terize the stochastic process described by the SDE �1� for
different choices of a, b, c, d, and e. Our analysis is essen-
tially based on the sign of the factors Fn−j appearing in Eq.
�6�. Indeed, Fn is a convex function of n, depending only on
a and c, whose zeros are n0=0 and n1=1−2a /c�R. If
n1�0 all the moments diverge when t→ tlim

− , while if
n1�0, all �n’s for n�n1 are convergent, otherwise not. For
a convergent �n, the estimate of the rate of convergence is
provided by �max=max�1 / �a� ,1 / �Fn�� which corresponds to
the largest relaxation time in Eq. �6�. The cases n1=0 ,1 ,2
have to be considered carefully, since they correspond to
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a=c /2, 0 and −c /2, respectively, for which Eq. �6� does not
apply �see �16��.

Case a�0 and c�0. All the moments diverge, since
Fn�0 ∀n�0. From �1� the stationary solution can be de-
fined only if 0�a�c /2 and e�0 and it is a generalized
Student t with tail exponent 
=1+n1. For a�c /2 and finite
t all the moments are well-defined but no conclusions can be
drawn about the exact form of the PDF. An example of the
latter case is shown in Fig. 1, with all the �n diverging for
large t.

Case a=0 and e�0. If c=0, then also d is 0 and Eq. �1�
describes an Arithmetic Brownian motion with time depen-
dent coefficients. If c�0, then a1=F1=0 and A1=b�, but
integration by parts reveals that no moment converge, while
the stationary solution is a power law with tail exponent

=2.

Case a�0, c�0, and e�0. Fn�0 for n�n1, thus only
the first n�n1 moments converge to a stationary level. The
special case a=−c /2 implies n1=2, b2=F2=0 and B2=e�
and previous conclusions are unchanged. Coherently the so-
lution of the FP equation predicts the emergence of power
law tails with 
=1+n1. In Fig. 2 a case corresponding to
n1�9.9 is shown for a stretched exponential time scaling,
while Fig. 3 corresponds to the case g�t�= �t− tlim�2.

Case a�0, c=0, and e�0. Equation �1� describes an
Ornstein-Uhlenbeck process. Fn becomes a linear function of
n and the moments reach a stationary value only if a�0. For
a�0 the Gaussian PDF has time dependent unbounded
mean and variance.

Case e=0 and c�0. As above the boundedness of the
moments can be deduced from the value of n1 and for
a�0 the stationary solution is an Inverted Gamma with
shape parameter n1�0 and scale parameter 2�b� /c�0. If
b�0 the Inverted Gamma is defined for x� �0,+��, while
for b�0 the support is �−� ,0�. A similar situation occurs for
d2−4ce=0 and d�0, c�0, and e�0, but the support
boundary point corresponds to −d / �2c�.

We can also deal with the more general case of a time-
dependent e�t�, for which an analysis of the p̃st�x� cannot be
performed straightforwardly. Here we outline how to proceed
for two cases discussed in the literature �7,12�, emerging in
the context of financial time series analysis. Equation �6� in
�12� leads to a SDE belonging to the class �1� for g�t�=1,
implying �= t− t0, a=−4.4�10−1, b=0, c=3.8�10−2,
d=3.04�10−3, and e�t�=e+e�e�t, with e=6.08�10−5,
e�=3�10−3, and �=−0.5. The type B knot now splits into
the sum of two contributions

Bk = Bk�
0

�

exp�bk���d�� and Bk� = Bk��
0

�

exp�bk����d��,

where Bk�= 1
2k�k−1�e�exp��t0� and bk�=bk+�. The last two

sums in Eq. �5� have to be coherently modified as
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FIG. 1. �Color online� Scaling of the moments for
a=b=9.5�10−2 and c=d=e=8.3�10−2; p̃0�x� is a zero mean
Gaussian with �X0

2�=0.01. The Monte Carlo estimates of the �n’s
within 68% error bars are superimposed to the analytical curves,
exhibiting full agreement.
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FIG. 2. �Color online� Lowest-order moments for a=−20,
b=d=e=0.1, c=4.5, with g= t
, 
=2 and p̃0�x�=��x�. In the inset
the last converging moment is compared to the first diverging one.
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FIG. 3. �Color online� Lowest-order moments for a=−24.3,
b=5, c=12.2, d=e=0.1, with tlim=1 and p̃0�x�=��x�. The first di-
verging moment �5 is shown in the inset.
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�
NA+2�NB+NB��=j

�
�NANBNB�

	n��NANBNB�
,t − t0� ,

while Eq. �6� becomes

�n�t� = �
j=0

n

cj
n��,t0�exp��Fn−j + dj

n���t − t0�� ,

with dj
n�N.

The second case we want to discuss is the model assumed
in �7� to describe the financial returns dynamics under the
objective probability measure. It is readily proved that, de-
fining Xt=ln St /S0−�t, Eq. �2� in �7� corresponds to
Eq. �1� for g�t�= t, a=b=d=0, c= �q−1� / ��2−q��3−q��,
e�t�=et2/�3−q� with e=�2�c�2−q��3−q���q−1�/��3−q��, and
�X0

n�=0, ∀n�1; �2 and c are positive constants, while the
Tsallis entropic index q belongs to �1,5/3� to ensure the ex-
istence of mean and variance �13�. The starting time t0=0
is a singular point for 1 /g�t� and we reproduce the correct
results in the limit t0→0+. Since �X0

n�=0 the only j con-
tributing to the sum in Eq. �5� is j=n, while b=d=0 im-
plies that every type A knot is identically zero and so
are all the odd moments. Thus, expansion �5� reduces
to exp�Fn��t��	n��0n/2 ,��t�� with �=ln t−ln t0 and n=2p,
p�1. Now the type B knot reads

Bk =
1

2
k�k − 1�e exp�2/�3 − q� ln t0�

��
0

�

exp„�bk + 2/�3 − q����…d��.

The same analysis leading to Eq. �6� allows us to conclude
that

�2p�t� = �
j=0

p

cj
2ptF2�p−j�+2j/�3−q�t0

−�F2�p−j�+2�j−p�/�3−q��,

where the cj
2p are all nonvanishing constants. The expression

in the square brackets governs the limiting behavior of �2p
when t0→0+. As a function of j, F2�p−j�+2�j− p� / �3−q� is
convex and for j= p its value is zero, so that we only have to
check the behavior for j=0. Indeed, if F2p+2p / �q−3��0
then limt0→0+�2p=+�, otherwise all the exponents of t0 are
non-negative and no divergence is possible. But recalling the
expression of c, we find q� �2p+3� / �2p+1�, recovering the
condition required in �7� to obtain a divergent 2p-th order
moment. It is worth noticing that the previous conclusions
can be readily rephrased in terms of the Hurst exponent
H=1 / �3−q� as it has been done in �5�.

In conclusion, the processes described by Eq. �1� emerge
in the study of many complex systems. An explicit expres-
sion for the associated PDF has not, however, been avail-
able for finite times. In this Brief Report, we provided
a characterization in terms of the moments, deriving
closed-form expressions at all orders and for all times.
These results, revealing a simple relationship between the
time dependence of Eq. �1� and the scaling behavior of
the moments provides a better understanding of how
these processes evolve with time, possibly but not neces-
sarily toward a stationary state and provide a closed-form
relation between the model parameters and their relaxation
times. We also believe that these results can improve the
statistical analysis of historical time series. Indeed, the
analytical expressions allow to directly fit the time scaling
of the empirical moments, providing a clear and simple way
to fix the model parameters. Moreover, the knowledge of
the moments is crucial to exploit analytical approxima-
tion to the full PDF associated to Eq. �1�, such as the Edge-
worth or more general expansions �14�, even though recov-
ering the PDF is a problem whose solution is in general not
unique.
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